Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Primatol ; : e23549, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690098

RESUMEN

Understanding diet selectivity is a longstanding goal in primate ecology. Deciphering when and why primates consume different resources can provide insights into their nutritional ecology as well as adaptations to food scarcity. Plant pith, the spongy interior of plant stems, is occasionally eaten by primates, but the context is poorly understood. We examine the ecological, mechanical, chemical, and nutritional basis of plant pith selection by a wild, frugivorous-omnivorous primate (Cebus imitator). We test the hypothesis that pith is a fallback food, that is, consumed when fruit is less abundant, and test for differences between plant species from which pith is eaten versus avoided. We collected 3.5 years of capuchin pith consumption data to document dietary species and analyzed "pith patch visits" in relation to fruit availability, visits to fruit patches, and climatic seasonality. We analyzed dietary and non-dietary species for relative pith quantity, mechanical hardness, odor composition, and macronutrient concentrations. Capuchins ate pith from 11 of  ~300 plant species common in the dry forest, most commonly Bursera simaruba. We find that pith consumption is not directly related to fruit availability or fruit foraging but occurs most frequently (84% of patch visits) during the months of seasonal transition. Relative to common non-dietary species, dietary pith species have relatively higher pith quantity, have softer outer branches and pith, and contain more terpenoids, a class of bioactive compounds notable for their widespread medicinal properties. Our results suggest that greater pith quantity, lower hardness, and a more complex, terpenoid-rich odor profile contribute to species selectivity; further, as pith is likely to be consistently available throughout the year, the seasonality of pith foraging may point to zoopharmacognosy, as seasonal transitions typically introduce new parasites or pathogens. Our study furthers our understanding of how climatic seasonality impacts primate behavior and sheds new light on food choice by an omnivorous primate.

2.
Proc Biol Sci ; 290(2003): 20230804, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37464751

RESUMEN

Studying fruit traits and their interactions with seed dispersers can improve how we interpret patterns of biodiversity, ecosystem function and evolution. Mounting evidence suggests that fruit ethanol is common and variable, and may exert selective pressures on seed dispersers. To test this, we comprehensively assess fruit ethanol content in a wild ecosystem and explore sources of variation. We hypothesize that both phylogeny and seed dispersal syndrome explain variation in ethanol levels, and we predict that fruits with mammalian dispersal traits will contain higher levels of ethanol than those with bird dispersal traits. We measured ripe fruit ethanol content in species with mammal- (n = 16), bird- (n = 14) or mixed-dispersal (n = 7) syndromes in a Costa Rican tropical dry forest. Seventy-eight per cent of fruit species yielded measurable ethanol concentrations. We detected a phylogenetic signal in maximum ethanol levels (Pagel's λ = 0.82). Controlling for phylogeny, we observed greater ethanol concentrations in mammal-dispersed fruits, indicating that dispersal syndrome helps explain variation in ethanol content, and that mammals may be more exposed to ethanol in their diets than birds. Our findings further our understanding of wild fruit ethanol and its potential role as a selective pressure on frugivore sensory systems and metabolism.


Asunto(s)
Frutas , Dispersión de Semillas , Animales , Ecosistema , Filogenia , Síndrome , Semillas , Bosques , Mamíferos , Aves
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33574059

RESUMEN

Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.


Asunto(s)
Adaptación Fisiológica , Encéfalo/crecimiento & desarrollo , Cebus/genética , Genoma , Longevidad/genética , Animales , Evolución Molecular , Citometría de Flujo/métodos , Bosques , Genómica/métodos
4.
ISME J ; 13(1): 183-196, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30135468

RESUMEN

Research on the gut microbiota of free-ranging mammals is offering new insights into dietary ecology. However, for free-ranging primates, little information is available for how microbiomes are influenced by ecological variation through time. Primates inhabiting seasonal tropical dry forests undergo seasonally specific decreases in food abundance and water availability, which have been linked to adverse health effects. Throughout the course of a seasonal transition in 2014, we collected fecal samples from three social groups of free-ranging white-faced capuchin monkeys (Cebus capucinus imitator) in Sector Santa Rosa, Área de Conservación Guanacaste, Costa Rica. 16S rRNA sequencing data reveal that unlike other primates, the white-faced capuchin monkey gut is dominated by Bifidobacterium and Streptococcus. Linear mixed effects models indicate that abundances of these genera are associated with fluctuating availability and consumption of fruit and arthropods, whereas beta diversity clusters by rainfall season. Whole shotgun metagenomics revealed that the capuchin gut is dominated by carbohydrate-binding modules associated with digestion of plant polysaccharides and chitin, matching seasonal dietary patterns. We conclude that rainfall and diet are associated with the diversity, composition, and function of the capuchin gut microbiome. Additionally, microbial fluctuations are likely contributing to nutrient uptake and the health of wild primate populations.


Asunto(s)
Bacterias/aislamiento & purificación , Cebus/microbiología , Heces/microbiología , Bosques , Microbioma Gastrointestinal , Estaciones del Año , Animales , Bacterias/clasificación , Bacterias/genética , Costa Rica , Dieta , Genoma Bacteriano , Metagenómica , ARN Bacteriano/genética , ARN Ribosómico 16S , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...